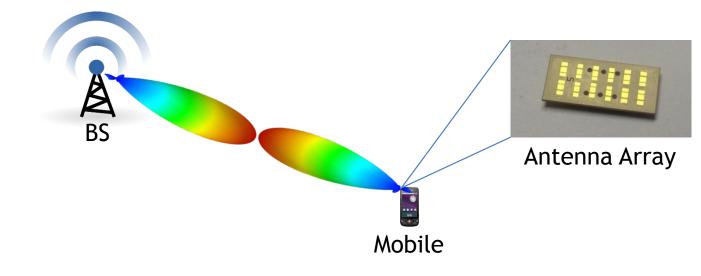
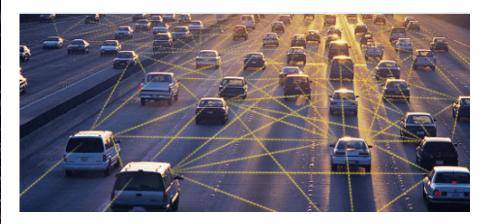


Millimeter Wave Networking Challenges


Visions for Future Communications Summit 23.10.2017

Joerg Widmer, Research Professor IMDEA Networks, Madrid, Spain


Developing the Science of Networks

Mm-Wave Communication at a Glance

- Multi-Gbit/s per user to support rapid increase in wireless traffic
 - Many GHz of spectrum available at mm-wave frequencies (>6GHz)
- Very high levels of spatial reuse
 - Highly directly antenna arrays
 - Low interference (through side lobes)

Challenging New Scenarios

V2X, autonomous vehicles (drones, robots, ...)

Virtual/augmented reality

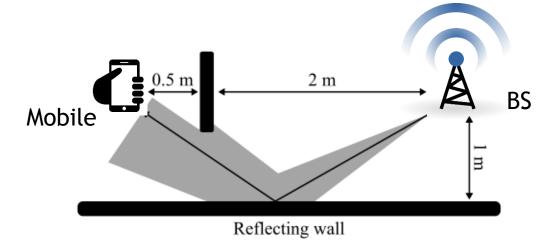
Millimeter-wave mobile networks

Mm-Wave Related Problems

Millimeter-wave communication is not easy

- High frequency related path loss
- Most materials block the signal
- Communication primarily line-of-sight
- Directional antennas need to be *aligned*
- RF design much harder at these frequencies
- Mm-wave links are brittle and break easily
- How to design fast, reliable, low latency networks?

Challenges


- Fast beam training
 - With many devices
- Quickly detect outage or blockage
- Support fast switching
 - Devices with multiple antenna arrays
 - Maintain multiple alternative mm-wave paths
 - Use multiple RF technologies (at different frequencies)
- Without incurring excessive overhead!
 - Many small cells, very frequent handovers between BS or technologies, Gbit/s streams, ms latency requirements

Mm-Wave Channel is Highly "Geometric"

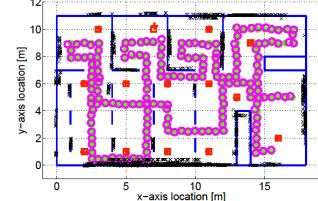
• Few available communication paths

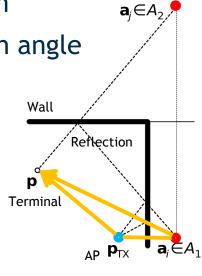
6

- Position/movement of communication partner can be used to steer the antenna array
- Positions of obstacles allow to infer which paths are blocked
- Positions of obstacles/walls allow to infer which reflected paths are available

Exploiting Side Information

- Use available sensor information (gyroscope, accelerometer, magnetometer, GPS, radar, ...)
- Anticipatory networking
 - Network prediction and optimization under uncertainty
 - Machine learning to learn environment and movement patterns → determine good resource allocation decisions (handover, beam steering, ...)
- Multi-band communication allows to use channel information from one band for communication at another


Example: Beam Training Using Side Information


 Beam steering using angle-of-arrival estimation at low frequency band (for multi-band devices)

8

- Either using a lower frequency location system
- Or build a mm-wave location system (based on angle information)

Transport Related Issues

- Quickly switching Gbit/s streams between base stations and/or technologies is not trivial
 - Tight integration with C-RAN design can help
- Not as easy as running multi-path TCP over the multiple links or technologies
 - Need to quickly react to large rate variations; current transport protocols do not do this well
- Large buffers needed to support high data rates; small buffers desirable for low latency
 - Bufferbloat is an issue already at much lower rates
 - Note: also packet aggregation is very important

Summary

- Single millimeter-wave links more or less well understood
- Dynamic networks remain a huge challenge
 - Efficient, low overhead orchestration of multiple links, technologies
- Exploiting Side Information
 - Anticipatory networking
 - Machine learning
- Integration with backhaul and C-RAN is important
- THz and VLC systems bring even further challenges

THANK YOU !

11

institute

netv

62

Challenges at all Levels of the Protocol Stack

- Difficult RF design \rightarrow non-typical transceiver architecture
- Very directive signal → align the beams and keep them aligned (mobile! network)
- Short range \rightarrow frequent handovers (or multi-hop routes)
- Many access points → efficient network management and control, energy efficiency
- Blockage \rightarrow relaying, fall back to lower frequency
- Little interference \rightarrow encourage parallel transmissions
- No omni-directional control signals for coordination → new initial access and MAC layer paradigms
- High rate variations \rightarrow requires flexible transport protocol
- Typical packet size too small for Gbit/s rates \rightarrow extreme packet aggregation (100s or 1000s of packets)
- ... and many many more