From Slicing to Dynamic Resource Control

Dirk Trossen*

InterDigital Europe, London, UK

dirk.trossen@InterDigital.com

Rui L. Aguiar*

Instituto de Telecomunicações / DETI Universidade de Aveiro, Portugal ruilaa@ua.pt

Artur Hecker*

Huawei ERC, Munich, Germany artur.hecker@huawei.com

*Without any particular author order

Visions For Future Communications Summit | Lisbon, Portugal, Oct 23-34, 2017

5G Slicing: Common Understanding

Definition: 5G E2E Network Slicing is a concept for running multiple logical networks (which could be customized and with guaranteed SLA) as virtually independent business operations on a common physical infrastructure.

3GPP: Slicing and atomic functions in standardization

The general direction has been acknowledged and standardized by 3GPP

From 3GPP TR23.799

Key issue 1: Support of network slicing

Key issue 2: QoS framework

Key Issue 3: Mobility management framework

Key issue 4: Session management

Key issue 5: Enabling (re)selection of efficient user plane paths

Key issue 6: Support for session and service continuity

Key issue 7: Network function granularity and interactions between them

Key issue 8: Next Generation core and access - functional division and interface

Key Issue 9: 3GPP architecture impacts to support network capability exposure

Key issue 10: Policy Framework

Key issue 11: Charging

Key issue 12: Security framework

Key issue 13: Broadcast/Multicast Capabilities

Key Issue 14: Support for Off-Network Communication

Key Issue 15: NextGen core support for IMS

Key Issue 16: 3GPP system aspects to support the connectivity of remote UEs via relay UEs

Key Issue 17: 3GPP architecture impacts to support network discovery and selection

Key Issue 18: Interworking and Migration

Key Issue 19: Architecture impacts when using virtual environments

Key issue 20: Traffic Steering, Switching and Splitting between 3GPP and non-3GPP Accesses

Key Issue 21: Minimal connectivity within extreme rural deployments

In red: priority key issues

3GPP Current Working Model **TS23.501** *Modularization as key design element Also: Service-Based Architecture*

NGMN: slice templates as representations of long term business contracts

State of the art in network slicing and softwarization

Current approach: cross-domain management++

- Through novel and more complex management functions
- Architecture: OSS/BSS gets extended with new functions for slice creation, deletion, monitoring
- Those functions get implemented by extending and translating between different information models in AN/RAN, TN, Core, etc.

Doubts with that approach:

- How to do E2E? Management traditionally is bad with heterogeneity
- Far away from the devices, from network events
- □ Far away from networking too centralized, too high level, too IT ⊗
- Results in very static slicing with pre-provisioning:
 maybe OK for less than 10 slices

Slicing: from HW Composition to SW Composition Plethora of modules/paths - must work correctly any time

Paths and end-points are part of the potentially critical internal network function realization

Guaranteed, correct execution of all this is required:

- Correct local execution of hundreds of thousands of components
 - Shared with other executed components, yet guaranteed scheduling
- Correct, guaranteed interconnection of components in spite of contention
- Timely control of all this
 - For creation/migration, path QoS, execution guarantees, checks, quotas, ...
- Correct function of the executing environment
 - Including all resources (compute, network)
 - ... and their control systems

5G requires more than best effort because of its own realization

Dynamic slicing: adapt the slice in runtime Execution control

- Static slicing is a waste of resources
 - Differences in usage between day and night
 - Differences in geographical usage
 - Green Networking
 - Service popularity/success difficult to predict
 - Example: SMS, Pokémon Go
- Dynamic slicing allows to adapt a slice
 - Like in the Cloud/DC: scale in / scale out
 - Dynamic resource assignment
 - Dynamic scheduling depending on real usage

Static slicing is like a bus lane

Software Networks: A metaphor

Before

Ready to use

- Can type a text straightaway
 Hardware defines the service (1 service)
- Hardware limitations = service limits

After

Not ready to use

- Need to install and start MS Word first (mgmt)
- Need to execute MS Word (runtime control)
 - Runtime resource allocation (CPU, memory, disk)
 - In parallel to other applications

Software defines the service (N services)

Hardware limitations = service quality limits

On the expected dynamics

Running on distinct, well-tested appliances Well-tested, unshared, stable, low failure rates

Running on a shared pool of COTS appliances
Huge numbers, mobility of network elements,
uncertain outcome, sharing, moderate failure rates:
too high load

Management cannot work as the foundation of the NF configuration. We need automation, i.e. **control**

Software Networks: on runtime coordination

Pushing such treatment to management is possible but too slow Need to keep it at resource layer, i.e. akin to **control**

On the expected scales Number of modules, number of paths

Number of modules (#NFI) =

Number of Paths between modules:

worst case scales in O(#NFI²)

We need a lot of automation, i.e. **control**!

We argue that <u>Control</u> is the right approach to address the softwarization challenges

Controlling Slices and Sliced Networked Systems Some Solution Elements

- Move from Design-Time approach to Runtime approach
 - Ownership through control
 - Growing from within

Build for High Dynamics

- Move from dynamic loads to dynamic presence (churn) and to dynamic topologies
- Support for scale in and scale out, including for your own slice support systems

Embrace Distributed Software systems principles

- Generic Interfaces and Self-describing Objects, instead of predefined information models
- Value Scalability over Optimality
- Conflict Avoidance and Resolution, move away from Sequential Models
- Prepare for Loose and Eventual Consistency Models, instead of presumed full correctness
- Dynamic Resource Management: Garbage Collection for Networks

Runtime Control Autonomic in setup and distributed by default

Compare to IETF ANIMA, IETF SFC

Conclusion

- Slicing and network softwarization are new challenges in networking
 - So far, only orchestration and management are properly addressed
- The execution and runtime problems are mostly ignored
- Their solution requires new fundamental research
 - Resilient Integrated Control of an unstable set of distributed resources of different nature
 - Distributed Scheduling on top of such a resource set
 - Conflict Avoidance and Resolution
- Needs:
 - Least common denominator for programmable networks of the future
 - Distributed Network wide primitives with good runtime scheduling for jobs and flows

THANK YOU

IIIMINI IOO

Visions For Future Communications Summit | Lisbon, Portugal, Oct 23-34, 2017