Software-defined RAN for 5G and beyond – how flexible can it really be?

We are proud member of 5G Essence consortium

Visions for Future Communications Summit, Lisbon, October 2017

Dr. Slawomir Pietrzyk
Starting point: 5G Essence

- **Classification:** H2020 5G-PPP Phase 2 project
- **Scope:** The project addresses the paradigms of Edge Cloud computing and Small Cell as a Service by fueling the drivers and removing the barriers in the Small Cell market, forecasted to grow at an impressive pace up to 2020 and beyond and to play a key role in the 5G ecosystem.
- **Timeframe:** June 2017-December 2019
- **Partners**
Network architecture transition

Networks of the past

- EPC cabinet
- base station cabinet
- base station tower
- databases

Networks of the future

- MEC server (COTS) including: vRAN, vEPC, possibly applications
- Share among many base stations
- Small cell base stations: RRH, DAS, femto, pico
Software-defined RAN

Virtualization framework
- Enables virtual operation and RAN slicing – key technical change in 5G
- Allows for execution on any infrastructure
- Enables easy extensions and customizations
- Allows for various functionality mappings

RAN controller
- Controls whole RAN
- Manages 3D radio resources
- Enables support of various traffic types (e.g., IoT)
- Enables QoS guarantees
- Optimizes latency

3GPP stack
- Realizes standard base station protocol stack functions

Management interface

Virtualization framework
- Enables virtual operation and RAN slicing
- Allows for execution on any infrastructure
- Enables easy extensions and customizations
- Allows for various functionality mappings

MANO

RAN controller
- Controls whole RAN
- Manages 3D radio resources
- Enables support of various traffic types (e.g., IoT)
- Enables QoS guarantees
- Optimizes latency

Virtual resources

3GPP stack
- Realizes standard base station protocol stack functions

Virtualization framework

Physical resources „bare metal”

OS / VM

MEC cloud

Base stations, RRHs

Fully software-defined and NFV-compatible RAN functionality ready to be deployed on physical (base station) or virtual (MEC servers) resources using proprietary technology
Example zoom-in: 3GPP stack
Example deployments

Classical case: all functions mapped on physical processor sitting at the base station

vRAN case: functions split into virtual part running on servers and physical on RRH

All-virtual case: our software provides virtualized functions for other base stations
Customization for verticals

Public safety VNF add-ons:
- D2D mode
- Extra protection

Automotive VNF add-ons:
- Latency reduction
- D2D mode

IoT VNF add-ons:
- PHY signaling reduction
- NB IoT support
Open questions

• How flexible can SD-RAN be with regards to?
 - Functional split and NFV independence
 - Mapping on physical or virtual resources
 - Opening APIs within protocol stack
 - Core NFVs reusability for various verticals
 - Use of customized NFVs for various verticals

• What new players do we see in an open value (and processing) chain?
 - Role of telcos
 - Other roles: e.g., data center provider or service integrator
IS-Wireless
ul. Puławska 45b,
05-500 Piaseczno / near Warsaw,
Poland, EU

phone +48 22 213 8297
fax +48 22 213 8298
web www.is-wireless.com
e-mail info@is-wireless.com