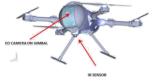


Immersive user experiences in Smart Spaces challenges for future communication networks beyond 5G

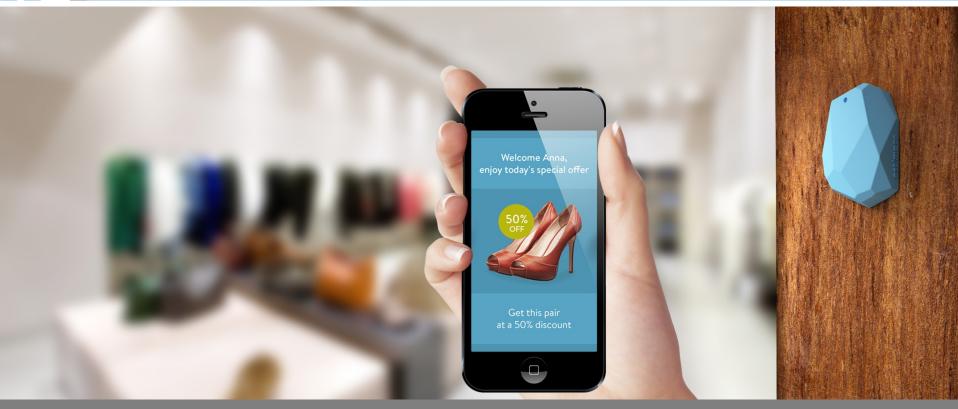
Gino Carrozzo Deputy Head of R&D **Nextworks**

Visions for Future Communications Summit

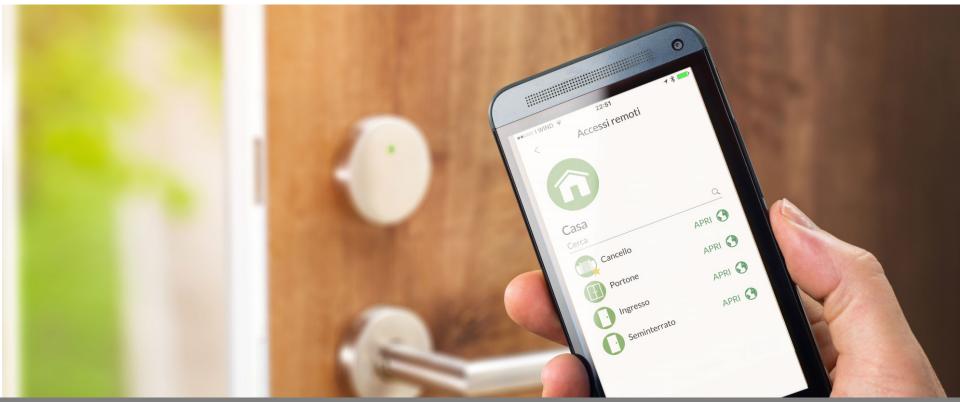

Oct 23-24, 2017 ISCTE, Lisbon, Portugal

www.nextworks.it

A bit of rationale and context


- Many device types
 - sensors, smart cameras, robots, drones, smart glasses, AR/VR visors
- For the increasing demand for new value-added services
 - Targeted content distribution based on personal behaviours
 - Innovative interactions with the ambient (immersive interfaces) for entertainment, shopping, and everywhere gaming
 - Augmented Reality (AR) for Industry 4.0
 - etc.
- Which all require a more advanced future network starting from 5G and going beyond
 - Truly programmable and secure many to many connectivity, at large scale
 - Minimum end-to-end latency, high service resilience in dynamic conditions
 - Computation and functions more from the cloud to the edge, and potentially down to the devices (gateways, sensors and actuators), activated only when needed

Example: Proximity marketing in the Smart City



Send customised push notifications to smartphones or provide the user with "suggested shopping paths" in the mall/shopping street

Our perceived gap:

- Need very precise location info to work well
- Need integration of network & non-network information to create profiled visits: e.g. customer's preferences and usual behaviours, forecast of visit paths, crowd/queueing information

Example: Smart locking & public safety

Activate ad hoc access restrictions or security alerts in case "dangerous" individuals approach or enter into private/public buildings

Our perceived gap:

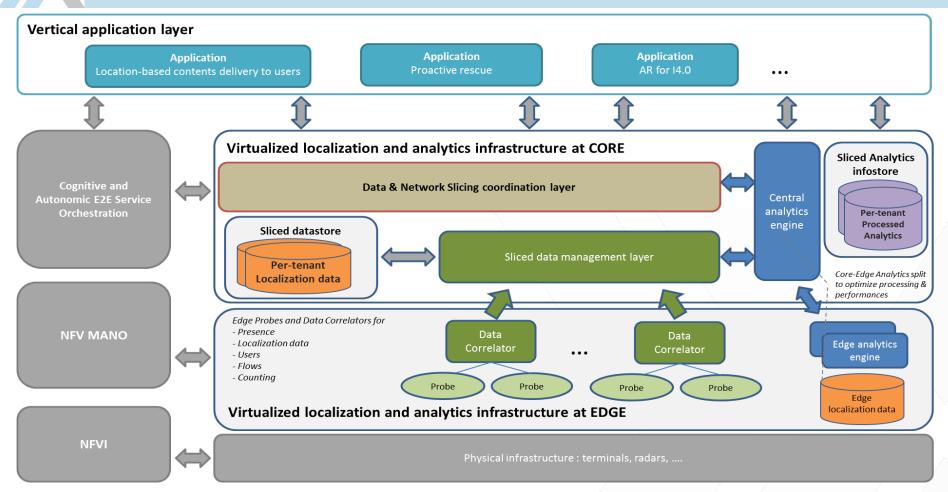
- Predict presence also from non-network data (face recognition systems, track position, etc.)
- Use precise location to configure the systems and interact with various types of sensors and actuators in the environment, not all under the same administrative operator
- Allocate some parts of the decision loop down to the edge, closer to the sensors/actuators

Example: Augmented and Virtual Reality for I4.0

Remote working with VR/AR, e.g. to optimize time and quality of operations in the field or to reduce human activity in harsh or insecure production environments

Our perceived gap:

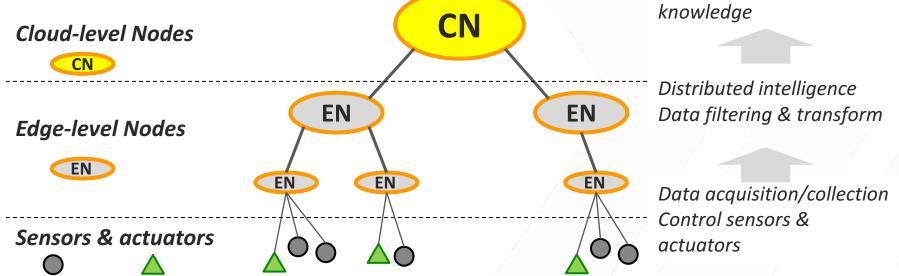
- Precise positioning of users and devices in specific areas of an industrial plant
- Context information from multiple diverse sources: environment, sensors & actuators
- Highly reliable control loop with functions partly mirrored at the edge (to work in case of disconnection


Everything new ?

- No, these scenarios are just largely marketed within the 5G vertical categories
 - Exp. under mMTC & uRLLC
- But...
 - 5G R&D seem focused mainly on the network part, virtualization, software networks and related cognitive functions
 - Still a significant gap to fill to embrace also all those functionalities which go beyond communications, e.g.
 - Truly seamless collaboration and access to services and resources provided by different platforms
 - Correlation of network actions/configurations with behavioural patterns from raw location and physical events
 - Accurate and ubiquitous information on the location of physical targets
 - Efficient/New function split between the core/cloud and at the edge
 - **Security** end-to-end, for data and communications

An attempt of vision

- We imagine future communications beyond 2020 capable to offer *truly immersive user experiences*, across the various scenarios of smart living, e-Health and Smart Industry
- The future communication network beyond 5G should
 - Complement the cognitive and autonomic network service end-to-end orchestration with
 - Network and non-network functions
 - Flexible allocation of functions edge-to-edge or edge-to-cloud based on dynamic pooling of local unused resources from diverse participating devices
 - Offer programmable analytics to the application layer through open interfaces, including raw and analytics-based location based on multiple sources of information (network, devices, user tracking, etc.)
 - Support more intelligence at the edge
 - For long lasting computation: more efficient virtual infrastructure managers for the V[N]Fs to deploy at the edge (e.g. more lightweight VIM than a full OpenStack)
 - For inconsistent traffic patterns (e.g. from sensors): integrate with **serverless/ Function as a Service (FaaS)** approaches


An attempt of vision (2)

- At the edge: virtualized sensor probes and data correlators instantiated dynamically, serverless edge analytics and local datastore
- At the core: the main slicing, central orchestration and analytics functions, per slice/tenant

An attempt of vision (3)

- This future network builds on the consolidated Software Network frameworks for 5G (SDN/NFV/MEC), as e.g. developed in 5G PPP
 - Cognitive/autonomic service orchestration over multi-domain slices
 - Programmatic network interfaces exposed to the application layer to instantiate and manage the dynamic lifecycles of the Network Slices
- But may need to be organized in a more complex hierarchy of control tiers

Do new critical requirements emerge?

- Plenty of different network and non-network technologies to be seamlessly integrated (WiFi, BLE, RFID, DGPS, etc.)
- Huge mass of data to be correlated, federated and exposed in analytics
- Different service requirements for different applications, e.g. location

	Navigation in Public Buildings	Proximity Detection	Nano Location in store	Augmented reality
Ranging accuracy	<1 m, same floor	<5 cm	<1 cm, same floor	<1 cm
Pointing angles (AZ, EL & Roll) accuracy	n/a	<15deg	<10deg	<2deg
Latency	< 250ms	<200ms	<10ms, for motion estimation <100ms for static estimation	<10ms
Refresh Rate	<1 Hz	<2Hz	10-100Hz (same as GPS)	0.5Hz-100Hz

• And many more....

Source IEEE 802.11-16 NGP

ENGINEERING FO

Thank you !!

This work was partially funded by the European Commission Horizon 2020 5G-PPP Programme under Grant Agreement number H2020-ICT-2014-2/671672 - SELFNET **Gino Carrozzo** g.carrozzo@nextworks.it

via Livornese, 1027 56122 S. Piero a Grado, Pisa - ITALY