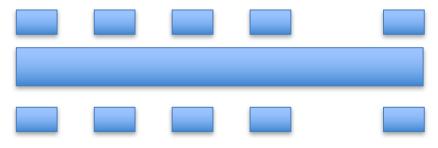


Social based self adaptive RAN for flexible service composition and improved efficiency

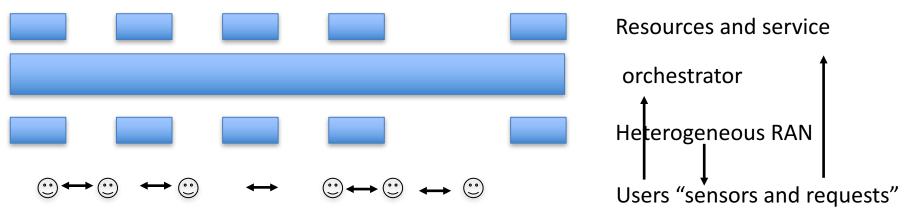
Favalli Lorenzo, University of Pavia, Italy lorenzo.favalli@unipv.it


Telecommunications and Remote Sensing Lab.

Going back to Goldsmith, Hecker and Davoli presentations...

Telecommunications and Remote Sensing Lab.

Going back to Goldsmith, Hecker and Davoli presentations...


There was a nice picture about orchestration

 To point out the problem is np-really-hard and energy matters

Going back to Goldsmith, Trossen and Davoli presentations...

 To point out the problem is np-really-hard and energy matters

We believe to solve this problem we need a change in perspective at the network level by involving the users' devices providing and sharing information to be used for control and optimization

Telecommunications and Remote Sensing Lab.

Milestones in network evolution

- Cognitive radio. Not just for spectrum management
- Direct device-to-device (D2D) communications Energy efficient avoid use of network resources
- Local ("edge") distributed computation Keep the problem as local as possible
- Social networks

TLC

& R S Lab

Effective means to share info without direct communication

Milestones in network evolution

- Cognitive radio. Not just for spectrum management
- Direct device-to-device (D2D) communications Energy efficient avoid use of network resources
- Local ("edge") distributed computation Keep the problem as local as possible
- Social networks

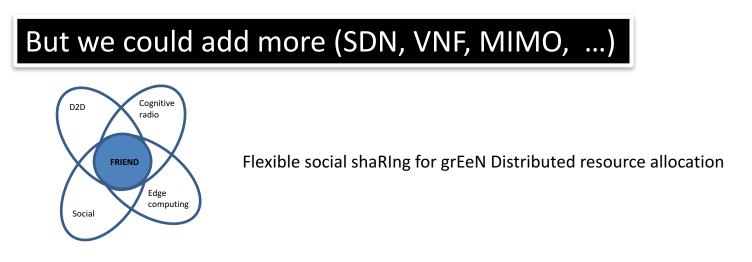
TLC

& R S Lab

Effective means to share info without direct communication

But we could add more (SDN, VNF, MIMO, ...)

Telecommunications and Remote Sensing Lab.

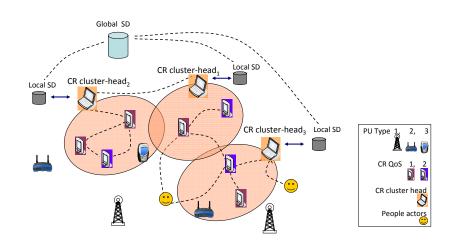

Milestones in network evolution

- Cognitive radio. Not just for spectrum management
- Direct device-to-device (D2D) communications Energy efficient avoids use of network resources
- Local ("edge") distributed computation Keep the problem as local as possible
- Social networks

TLC

& R S Lab

Effective means to share info without direct communication



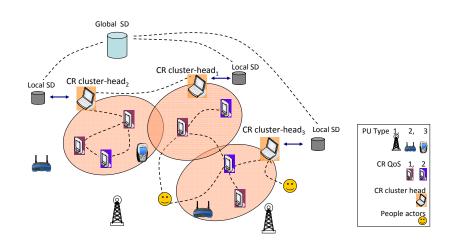
Telecommunications and Remote Sensing Lab.

Basic idea

Mobile devices may perform tasks independently from their owners

TLC

& R S Lab


- Mobile devices:
 - Collect measurements
 - Exchange with peers
 - Exchange with network nodes
 - Make isolated decisions
- Network nodes
 - Collect mobile devices measurements and requests
 - Store users' (devices) profiles
 - Perform distributed computations to optimize resources

Telecommunications and Remote Sensing Lab.

Basic idea

Mobile devices may perform tasks independently from their owners

TLC

& R S Lab

- Mobile devices:
 - Collect measurements
 - Exchange with peers
 - Exchange with network nodes
 - Make isolated decisions
- Network nodes
 - Collect mobile devices measurements and requests
 - Store users' (devices) profiles
 - Perform distributed computations to optimize resources

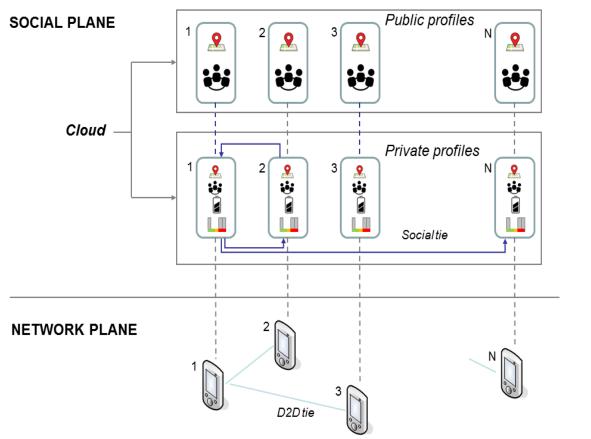
Exploit this ablity to collect management data related to the actual current environment and user requests

Telecommunications and Remote Sensing Lab.

Social CR

- "Social" differs from "Cooperative":
 - Not only sharing of a <u>environment info (i.e. channel avaibility</u>) but also <u>Device/user profile (battery, data rate, trust,..</u>) to allow different levels of optimization
- Another social feature is the **LIST OF CONNECTIONS**:
 - the list of other users with whom the users share a connection: the list enables viewers to traverse the network graph moving through the lists.
 - what makes social network sites unique is not that they allow individuals to meet strangers, but rather that they *enable users to articulate and make visible their networks*.

Social CR



- "Social" differs from "Cooperative":
 - Not only sharing of a <u>environment info (i.e. channel avaibility</u>) but also <u>Device/user profile (battery, data rate, trust,..</u>) to allow different levels of optimization
- Another social feature is the **LIST OF CONNECTIONS**:
 - the list of other users with whom the users share a connection: the list enables viewers to traverse the network graph moving through the lists.
 - what makes social network sites unique is not that they allow individuals to meet strangers, but rather that they *enable users to articulate and make visible their networks*.

What do we get: a completely flat nework with a rethinking of the cellular concept as fully self organizing

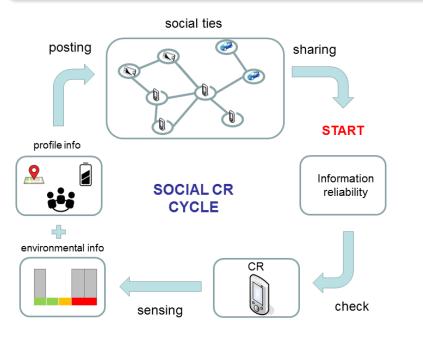
Telecommunications and Remote Sensing Lab.

Network abstraction

Device category, willingness to cooperate, energy type/level

Interests and activities

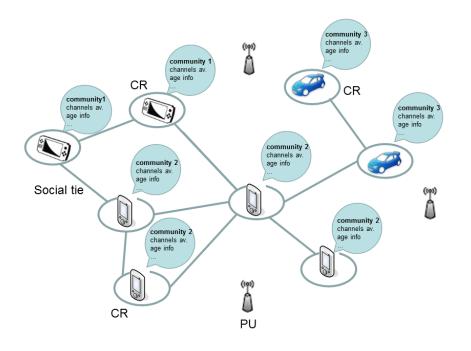
Interaction between devices to create volatile links


Also look at Carrozzo's presentation

TLC

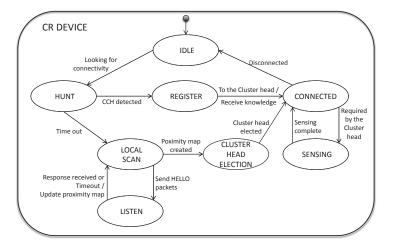
& R S Lab J

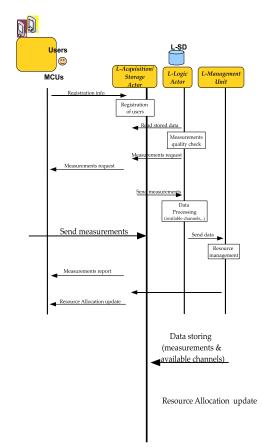
Telecommunications and Remote Sensing Lab.


Operation flow

TLC

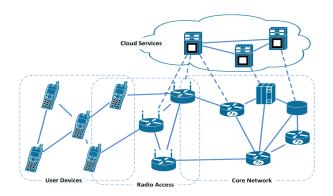
& R S Lab

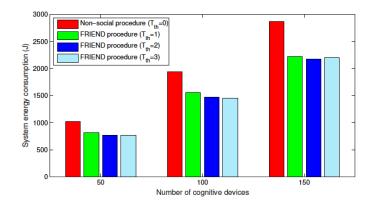

Ideally this would enable a completely flat network structure somehow loosing the concept of "provider" in the traditional sense Proposal is <u>independent from any</u> <u>new transmission technique</u>. Rather this is just a new netwok structure for signalling and monitoring


Telecommunications and Remote Sensing Lab.

Some basic protocol structure

We defined some initial messages and state machines to define node and network operations




Telecommunications and Remote Sensing Lab.

Initial sample results

Based on on these protocol definitions we implemented simulations to verify performance

Result here shows improved efficiency in terms of energy consumption to achieve a generalized consensus (*Vizziello, Amadeo, Favalli "Social Cognitive Cooperation for Device to Device Communications"*)

Telecommunications and Remote Sensing Lab.

In summary

- Joining social networks and D2D has been demonstrated to reduce latency in spreading information (not our work: *Ioannidis et al. Optimal and Scalable Distribution of Content Updates Over a Mobile Social Network, INFOCOM 2009*)
- Joining social/cognitive/D2D reduces energy requested for network status understanding (our work)
- A new network with improved efficiency and flexibility? To be proved

In summary

- Joining social networks and D2D has been demonstrated to reduce latency in spreading information (not our work: *Ioannidis et al. Optimal and Scalable Distribution of Content Updates Over a Mobile Social Network, INFOCOM 2009*)
- Joining social/cognitive/D2D reduces energy requested for network status understanding (our work)
- A new network with improved efficiency and flexibility? To be proved
- CHALLENGES
 - decoupling between user's identity and device identity with <u>privacy</u> preserving algorithms
 - public vs. private profiles definition and corresponding <u>privacy</u> issues
 - fast discovery modes for <u>community</u> creation and information <u>sharing</u>
 - <u>distributed</u> computation in edge nodes for route/spectrum management
 - dynamic and <u>proactive</u> resource allocation based on profile knowledge
 - <u>interaction</u> with other types of networks