

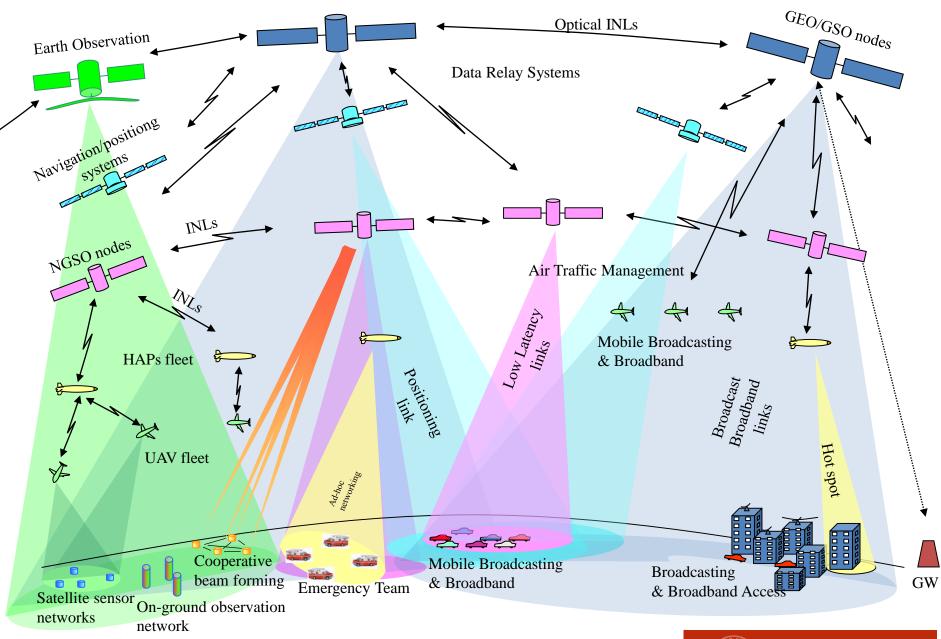
ALMA MATER STUDIORUM Università di Bologna

SATCOM RESEARCH CHALLENGES FOR THE NEXT DECADE (2020-2030)

Alessandro Vanelli-Coralli

Department of Electrical, Electronic and Information Engineering - Guglielmo Marconi

The content of these slides is partially based on the Networld2020 Satcom WG white paper "SatCom Resources For Smart & Sustainable Networks And Services" November 25, 2019 - bit.ly/SatComWG


The vision reported in these slides is my own

SatCom from separate networks to an integrate component

- Satellite broadband, broadcast, and IoT usually developed as "standalone" networks
- From 3GPP release 17 SatCom (aka Non-Terrestrial Networks) are also an integrated component of the overall 5G Architecture
 - NR-NTN (eMBB) Rel. 17 Normative phase
 - LEO and GEO constellations
 - $_{\odot}$ IoT-NTN Rel. 17 Study (and normative) phase
- The architecture now consists of
 - a terrestrial dimension
 - **o** a NTN multi-layered dimension

Future Satellite-Terrestrial integrated Architecture

- A global and flexible architecture for sustainable, resilient, and inclusive networks and services (Anywhere, Anytime, to Any Device)
- Multi-layered and multi-dimensional
 - o Terrestrial + Satellite Components
 - GSO, NGSO, HAPs, UAV constellations
 - ${\scriptstyle \odot}$ Inter-node vertical and horizontal links
 - Vertical: terrestrial/NTN, GSO/NGSO, NGSO/HAPs...
 - Horizontal: same constellation nodes

Research needed at different levels of the architecture to manage complexity, flexibility, and integration

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space
ABSTRACTION, NFV, AND ORCHESTRATION	Technology agnostic network managementTechnology agnostic traffic management

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space
ABSTRACTION, NFV, AND ORCHESTRATION	Technology agnostic network managementTechnology agnostic traffic management
ANTENNA TECHNOLOGIES	 Higher frequency bands (Q/V/W/) Narrower and steerable beams (moving nodes)

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space
ABSTRACTION, NFV, AND ORCHESTRATION	Technology agnostic network managementTechnology agnostic traffic management
ANTENNA TECHNOLOGIES	 Higher frequency bands (Q/V/W/) Narrower and steerable beams (moving nodes)
RADIO ACCESS NETWORK DESIGN	RAN Optimization for NTN scenariosRAN adaptation to new architectures

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space
ABSTRACTION, NFV, AND ORCHESTRATION	Technology agnostic network managementTechnology agnostic traffic management
ANTENNA TECHNOLOGIES	 Higher frequency bands (Q/V/W/) Narrower and steerable beams (moving nodes)
RADIO ACCESS NETWORK DESIGN	RAN Optimization for NTN scenariosRAN adaptation to new architectures
SOFTWARE DEFINED PAYLOADS	Flying access-radio stratumLow latency and Flexibility

REASEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE AND CONSTELLATIONS	 From GEO to highly NGO orbits (e.g., vLEO) From few to hundreds of satellites (e.g. CubeSat) Hierarchical Architecture with inter-node links
SPECTRUM MANAGEMENT	 Vertical/Horizontal spectrum sharing Coexistence of GSO, NGSO, and HAPs constellations
OPTICAL COMMUNICATIONS	Efficient Feeder linksInter-node links in the space
ABSTRACTION, NFV, AND ORCHESTRATION	Technology agnostic network managementTechnology agnostic traffic management
ANTENNA TECHNOLOGIES	 Higher frequency bands (Q/V/W/) Narrower and steerable beams (moving nodes)
RADIO ACCESS NETWORK DESIGN	RAN Optimization for NTN scenariosRAN adaptation to new architectures
SOFTWARE DEFINED PAYLOADS	Flying access-radio stratumLow latency and Flexibility
AI & ML	System Complexity managementNetwork predictive configuration

Further reading:

 "SatCom Resources For Smart & Sustainable Networks And Services", Networld2020 Satcom WG white paper, version 1.0, November 25, 2019, bit.ly/SatComWG

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Alessandro Vanelli-Coralli

Department of Electrical, Electronic and Information Engineering -Guglielmo Marconi

alessandro.vanelli@unibo.it

www.unibo.it