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Technologies for Communications above 100GHz
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Towards Terabit-Per-second wireless connectivity
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New radio spectrum to meet the 6G capacity Demand 

▪ Wide bandwidths available at higher 
frequencies

▪ W-band: >17GHz

▪ D-band: > 30GHz

▪ 802.15.3d: > 50GHz
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Towards THz frequencies for Tbps wireless connectivity 
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Challenges from the antenna down to baseband
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For THz range and high power, CMOS is saturating. 

The champions are the III-V/III-N devices`
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GaN is the power champion
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Current landscape in foundry technologies
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CMOS beats any other technology in integration level

InP/InGaAs

GaAs

GaN

speed

max. power

silicon

III-V

III-V technologies use very few metals (gold), extrinsic parasitics not optimized

#transistors

(log scale) 



The 3D interconnect technology landscape
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Package stacking Multi-die Packaging
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ADC and DSP

▪ Baseband bandwidths grow to tens of GHz
▪ ADCs in the tens of Gsps range are needed

▪ Initially low spectral efficiency is required

▪ But eventually move to ~64QAM or so → ~7 to 9 bits

▪ DSP speed must follow 
▪ Very high speed

▪ Heavy parallelization

▪ Multi-path is less frequent but can happen

▪ Equalizer schemes must be revisited to cope with tens of Gbauds equalization
▪ Digital vs analog

▪ Pre- vs post equalization to bring complexity where it can be afforded (AP, BS)
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Chip-antenna co-design above 100GHz
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EM and thermal challenges
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Radar-Communications convergence

▪ Observation:

▪ Radar and communications hardware, DSP and antennas are very similar

▪ Radar and communications use more and more multiple antennas/MIMO concepts

▪ Mm-wave comm (e.g. WiGig, 11ay at 60GHz) and mm-wave radar (automotive 77/79GHz) are 
well mastered technologies

▪ Some wireless communications functionality have much in common with radar

▪ Radar range profile vs channel estimation

▪ MIMO radar vs MIMO channel estimation (channel between all possible TX-RX pairs)

▪ Some developments and standardization already bridge the gap

▪ Wi-Fi based people detection, fall detection

▪ Some products, software stack appear (Origin Wireless, Cognitive Systems, Aura, ...)

▪ Wi-Fi sensing (IEEE 802.11 SENS TIG/SG)
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Radar-Communications convergence

▪ But much more is possible

▪ Massive MIMO/large phased array systems can enable high angle resolution radar for 
target tracking and environment mapping

▪ Distributed massive MIMO can be turned into bistatic or multi-view radars

▪ Mm-wave/THz systems, with multi-GHz bandwidth, can have cm-scale range resolution

▪ Both functionalities can support each other for

▪ Improved performance

▪ Yet-to-discover new joint modes of operation
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Green field for THz



nLOS problem at mm-wave/THz

▪ Using phased array based relays/re-routers to 
create alternate LOS path while maintaining 
low latency 

▪ Angle of incidence ≠ Angle of reflection

▪ Advantages

▪ Overcomes blockage/shadowing

▪ No Synchronization, handoff, and latency issues 

▪ Low cost and lower power alternative

▪ Challenges 

▪ Self-interference problem ➔ full duplex design 
techniques

▪ Multi-user
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Robust coverage with Phased Array Mirror

Source: Dina Katabi’s MIT
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Extreme Edge Processor



Yesterday
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Cloud AI with extreme edge data

Extreme Edge Edge Cloud

DATA
Decisions

Learning & Inference

ISSUES:
• Data growing faster 

than connectivity
• Privacy
• Robustness
• Latency
• Power



Today
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Decentralized AI

Extreme Edge Edge Cloud
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Decisions
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Distributed learning
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ISSUES:
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• Latency
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Tomorrow
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Moving AI to the extreme edge

Extreme Edge Edge Cloud

Centralized learning

Distributed learning

Edge inference

DATA

Extreme edge AI
(fast, low power, safe, 

autonomous)

Analog vs digital trade-off

DATA

Model updates

Slowest decisions

Model updates

Slow decisions

ISSUES:
• Data growing faster 
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• Privacy even better
• Robustness
• Latency
• Power



PUBLIC

Neuromorphic Processor

Dimensions along which compute 

technologies can be neuromorphic

- Sequential vs. massively parallel

- Clocked vs. asynchronous

- Event-based processing

- Spiking NN

- Analog vs. digital

- Von-Neumann vs. non-Von Neumann 

(compute-in-memory)

- High-bit to Low-bit precision

- Learning from much labeled data vs. 

learning from little unlabeled data

This is NOT a traditional 

CPU/GPU/TPU/FPGA/ARM/...



Conclusions



Conclusions

▪ Communications above 100 GHz at tens of Gbit/s call for:
▪ Better devices for the RF part: III/V, III/N or GaN on CMOS

▪ Faster ADCs, tens of Gsps, 7+ bits

▪ Rethinking equalization schemes

▪ Intelligent non-specular mirror might help in some cases

▪ Chip-antenna co-design (antennas on chip become feasible)

▪ Exploiting the third dimension for bonding/stacking

▪ Joint radar and communications
▪ Leveraging massive arrays and mm-wave/THz bandwidth for high througput and high resolution

▪ New joint modes of operation

▪ Extreme edge computing is a new paradigm calling for
▪ A new breed of processor

▪ New learning modes (mostly unsupervised)

▪ Analog vs digital for extreme low power

▪ Computing-connectivity tarde-off
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Key research areas
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CMOS cannot do it alone anymore
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Marrying III-V with silicon?

▪ Several attempts to improve yield and
economics of III-V

▪ GaN on 300 mm Si wafers

instead of GaN on SiC

▪ High-mobility III-V 
combined with CMOS

▪ Monolithic, see

▪ Challenge: overcome lattice mismatch, 
mismatch in thermal coefficients

▪ Alternative: 3D combination of CMOS with III-V

▪ Wafer-level hybrid bonding

▪ Die-to-wafer, wafer-to-wafer, die-to-die

▪ Sequential 3D
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Combine best of both worlds

III-V



Which IC technology for > 100 GHz ?

III-V devices outperform Si(Ge) & GaN devices in speed, output power and efficiency > 100GHz

https://gems.ece.gatech.edu/PA_survey.html

InGaAs mHEMT

InGaAs HBT

Intel, IEDM 2019 GaN

Device-level, VD=2.5V, 

L=50nm
HRL, L=20nm

130nm InP-HBT


