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The Actual Revolution May Yet Come

• 5G is mainly a revolution in business models 

• Going beyond 5G may bring the actual revolution in mobile 

networking enabled by (RAN) virtualization & AI/ML

➔ “true” E2E network slicing (including vRAN)

➔ network functions executed on a GP hardware

➔ in-memory computation

➔ higher granularity & flexibility

➔ private, campus & regional networks

➔ new role of operators and vendors & new players, new 

business models & emergence of new services
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“The largest data records are not 
generated by companies in the 
Internet industry such as Google and 
Facebook, but by production 
technology systems“

McKinsey

Campus Networks for Industry
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ML based 
Intelligent Services

No standard method yet 
to obtain ML Data and 

implement policies over 
the network.

ML based applications in Current Networks



• Entry points for ML-based improvements
• high complexity (bad models)

• inefficient computation (limited resources)

• slow convergence (low latency applications)

• Potential benefits
• manageable complexity (e.g. via autoconfiguration)

• higher efficiency (e.g. reduce # measurements)

• fast decisions (e.g. parallelization & online learning)

• robust predictions ➔ anticipate rather than react

Why ML for Communications (=MLC)?
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[Andrew Ng] Key issues:

• Energy efficiency neglected

• Domain knowledge ignored

➔ Function properties not preserved

• Choice of performance metrics

• Amount of training data

Tools for MLC

Collection of training data is limited

• Fast time-varying channels and interference

• Short stationarity interval (V2X: 10-40ms)

• Distributed data 

• Limitations on computational power/energy

Huge datasets are available but

• Incomplete data (missing 
measurements for long periods)

• Erroneous data (e.g. software bugs) 

• Misaligned data (different times)

• Time series (i.i.d. unrealistic)

Lower layers (PHY/MAC) Higher layers



Learning in (Reproducing Kernel) Hilbert Spaces

Projection methods in RKHS:

➔ Easy to exploit side information

➔ Initial fast speed 

➔ Low complexity

➔ Convergence guarantees

➔ Massive parallelization via 

APSM for fast learning on GPUs



ML/AI for Beyond 5G RAN

• Robust online ML with good tracking capabilities 
➔ ML with small (uncertain) data sets and fast-varying distributions

• Distributed learning under communication constraints
➔ New functional architectures for Big Data analytics

• Low-complexity, low-latency implementation
➔ New algorithms, massive parallelization

• Dependable and secure ML

• Exploit domain knowledge (e.g. models, correlations, AoA)
➔ Hybrid-driven ML (e.g. models, other data)

➔ Learn features that change slowly over frequency, time...

➔ Preserve important function properties

➔ Exploit sparsity



Sparsity in Communication Systems

• Sparsity in the data (soft sparsity)

• Sparsity in the channel (soft sparsity)

• Sparsity in the user activity (hard sparsity)

• Sparsity in the network flow (hard sparsity)



Sparse Recovery via a Deep Neural Network

• Training must be short
➔Design a good DNN for 
sparse recovery and fast 
training 
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