

6G-NTN: A Cognitive Service-Centric Paradigm for Next-Generation Networking

Speaker: Franco Davoli

3rd Visions for Future Communications Summit 24th-25th November, Lisbon (Portugal).

Contributors

- This content has been prepared in the context of NetworldEurope Satellite Communications Working Group.
- List of contributors:
 - Tomaso de Cola (DLR, Germany)
 - Franco Davoli, Mario Marchese (University of Genoa, Italy)
 - Daniele Tarchi (University of Bologna, Italy)
 - Leonardo Goratti (Safran, Germany)
 - Paulo Mendes (Airbus DS, Germany)
 - Joan Ruiz (i2CAT, Spain)
 - Beatriz Soret (University of Aalborg, Denmark)

6G-NTN in a Nutshell

- Unified and distributed-orchestration platform
- Full interoperability of the space segment to the integrated terrestrial wireless-wired network
- Full exploitation of the peculiarities of the space segment

Control/Management Planes in 6G-NTN: Gluing Everything

- Future space networks to become cognitive by observing and acting autonomously
- Full automation of network management and configuration tasks,
- Service-based networking (e.g., routing, forwarding, caching)
- Intent-based Networking on ground and space networks

Main Building Blocks

Service centric networking

 Optimal placement and coordination of service function chains among different elements of the space and ground segments

Orchestration of space networks as an integrated part of the 6G system

• Exploitation of Function-as-a-Service paradigms supported by AI techniques to correlate NTN-6G context data with network operations and achieve effective network orchestration

Cloud continuum

 Exploitation of space assets placed in different interconnected flying systems will be an added value to guarantee diversified and QoS-proof access to distributed computing and storage resources across the whole 6G network.

· Dynamic end-to-end network slicing and resource allocation

• Effective service provisioning techniques across all protocol layers in order to enable a service assurance in multi-layer multi-orbit scenarios by means of AI-based complex dynamic control strategies

Distributed AI techniques

 Applied throughout the entire 6G-NTN network architecture to guarantee a flexible and effective service provisioning under the operational constraints imposed by the heterogeneity of NTN-6G network elements.

Main Directions for Effective Networking Operations in 6G-NTN

- Seamless Convergence of terrestrial and non terrestrial networks to boost 6G deployments
- Cognitive- and Intent-based Networking across heterogeneous networks
- Cloud services exploiting multi-orbit multi-layer assets
- Conception of satellite as a service to extend laaS paradigms in space
- Integration of Al-as-a Service to allow for flexible and autonomous network operations

Take-Home Message

Seamless convergence between TN and NTN subsystems as key objective to increase the competitive value of the whole EU industry in the path towards 6G.

Speaker: Miguel Ángel Vázquez, Senior Reseacher (Centre Tecnològic de Telecomunicacions de Catalunya)

3rd Visions for Future Communications Summit 24th-25th November, Lisbon (Portugal).

Contributors

- This content has been prepared in the context of NetworldEurope Satellite Communications Working Group.
- Special thanks to:
 - Eva Lagunas (UniLU).
 - Carlos Mosquera (UVigo).
 - Alessandro Vanelli-Coralli (UniBo).
 - Thomas Delamotte (UniBw).
 - Barry Evans (USurrey).
 - Cyril Michel (Thales-Alenia Space).
 - Thomas Heyn (FhG-IIS).
 - Xavier Artiga, Joan Bas (CTTC).

5G NTN Landscape

- Great success of incorporating space technologies in 5G NR (TR 38.821, TR 36.763)
 - Consolidated channel models and scenarios including GEO/NGEO.
 - CU/DU space splitting.
 - MAC enhancements for dealing with long delays.
 - Control plane data mobility aspects in LEO.
 - NB-IoT
- Studies will continue in future releases.

6G NTN in the New Space Economy

- Space economy is predicted to have a major leap in the next years.
- According to Morgan Stanley the space economy will increase from 350B\$ in 2016 to ITrillion\$ in 2040.
- This huge gain is based on new applications
 - Space tourism.
 - Earth observation.
 - Space debris mitigation.
 - and, of course, satellite internet.
- Goal: 6G NTN should not only consider the convergence of the space component in terrestrial networks, but to embrace all aspects of the new space economy.

Higher frequency bands

- The demand of more bandwidth entails the utilization of higher frequency bands.
- All players in the LEO race have applied spectrum allocation in EHF (Q/V,W).
- Is 5G NR ready for this new deployment?
 - Efforts in channel modelling are needed.
 - Thousands of satellite beams are expected, beam management shall scale accordingly.
 - Very high user bandwidth.
 - Spectrum co-existence.

FCC Authorizes Boeing V-Band LEO Broadband Constellation

By Rachel Jewett | November 3, 2021

Regenerative payloads

Xilinx launches 20nm space-grade FPGA for satellite and space applications

First to enable machine learning inference together with unlimited on-orbit reconfiguration for real time on-board-processing in space; delivers full radiation tolerance spanning all orbits.

- Compared to current approaches, detect and 'regenerate' the Earth signal in the satellite leads to low CAPEX (number of gateways) by means of increasing the overall spectral efficiency.
- Space-borne transceivers (space grade hardware) shall tackle very high bandwidth signals (> 2 GHz) with limited capabilities compared to terrestrial equipment.
- Is there any air-interface aspect that could alleviate space segment processing requirements?

Data-driven RAN

- In initial 3GPP studies CU/DU split for NTN is confirmed to have no shortcomings.
- Open RAN approach to space systems shall be revisited:
 - Missions are addressed independently, there is no current multi-mission(orbit) controllers.
 - What are the benefits of RAN functional split between space and ground?
 - Example: MCS selection performed at the space segment could yield into a tremendous throughput gain compared to ground solution.
 - NTN RAN optimization shall be based in data traces and shift from the current 'model-based' approach to a 'data-driven' one.

Sensing and Communications

- Multi-purpose satellite missions considering not only communications but other applications.
- Waveform design for both communications and
 - Radar: importance for space situational awareness, detecting space debris.
 - Position and navigation: high SNR communication signal could be employed for certain positioning applications (in addition to GNSS).
 - Timing is also critical for ground segment high capacity systems.
 - Earth observation applications.

Conclusions

- New Space will have a huge impact in European economy in the next years.
- 6G NTN air interface is instrumental for this development.
- 6G NTN shall be suitable for
 - PNT.
 - Space-ground functional split with regenerative payloads.
 - Space debris mitigation.
 - Next LEO race.

Towards a Sustainable Internet of Things (IoT)

Sustainable IoT

- Converged infrastructure able to provide multiple services.
- Energy-autonomous IoT nodes
- Efficient use of resources

 (energy, spectrum, other
 physical resources)
- Minimum environmental impact

- Sustainability is multidimensional
- Being energy efficient is just one aspect
- Sustainability
 - Design phase
 - Implementation phase
 - Operation phase
 - End-of-life phase
- One of the key challenges is to create a sustainable IoT concept.
 - IoT nodes
 - Infrastructure

Light-based IoT (LIoT)

Light based IoT concept

Light based IoT (LIoT)

- Light is used to a) power up an IoT node and b) send information wirelessly
 - Lighting infrastructure works as the AP
- Expose and Connect concept
- The energy-autonomous LloT node can be attached to virtually any object
 - Energy harvesting from light is efficient
- Low-cost, environmentally sustainable IoT solution suitable for multiple use cases/applications

VLC and Printed Electronics: A Happy Marriage

- Printed electronics (PE) provide a unique base to develop highly promising VLC solutions
- Active and passive components can be printed, e.g., conducting wires, resistors, capacitors, coils, transistors, displays, optical components, etc.
- PE allows printing components and eventually complete functionalities/systems on a substrate (paper, film, etc.)
- -> Towards a fully printed LIoT node
- -> Minimizing the environmental impact

Beyond LloT: Living Surfaces

Any surface, small or large, could become an active Living Surface when empowered by a number of key integrated functionalities including wireless connectivity as well as sensorial, actuatorial and processing capabilities.

- a. Fixed connections and functionalities
- b. Reconfigurable: Large-

Beyond LloT: Living Surfaces

small-scale living surfaces

small objects, e.g., manufactured items, product packages, tags, clothes, etc.

A living surface is a self-powered area containing a number of networking, processing and sensing functionalities implemented using printed electronics technology

VISION: THE SURFACE REVOLUTION

Both concepts, **LIoT** and its extension, Living Surfaces, have great potential to create a sustainable, flexible and **scalable** way to communicate and interact.

- Fully printed LloT node
- Fully sustainable LloT implementation,
 e.g., biodegradable electronics
- Developing a "1 cent" LloT node
- From printed LloT to Living Surfaces
 - Any surface to become active, working as an intermediary between people and its sorrounding environment and connecting them to the world

Beyond LloT: Living Surfaces

Living surfaces interacting with users

- Functionalitiesmayfollow the user
- A mobile device may not necessarily be as we know it today, but it could be integrated into and

Computing & communication: classical vs. quantum

Classical	Quantum
Bit \rightarrow 0 or 1	Qubit $\rightarrow \alpha 0 > + \beta 1 > $ (<i>superposition</i>)
Bits can be copied	Qubits cannot be copied (no-cloning theorem)
Each bit is independent from any other	Qubits can be entangled (nonlocal behaviour)
Bits can be transferred / amplified / stored in buffers	Qubits can be teleported (original copy is destroyed)
Bits degrade with distance during transfer	Same!
Bits can be stored for indefinite time	Qubits degrade (fast) over time

How to use the quantum properties?

- Superposition + entanglement
 - → Quantum advantage / supremacy

We are currently in the Noisy Intermediate-Scale Quantum (NISQ) era

- No-cloning theorem + nonlocal behaviour
 - **→** Device independent protocols

Notable example: Quantum Key Distribution (QKD) → see next slide

Quantum Key Distribution

No access to secure keys exchanged

Research areas

1. PHY-layer technologies

• More efficient and resilient quantum entanglement and transportation

2. Integration of classical & quantum network devices

- Re-design of security perimeters
- Impact on cloud-native architectures
- What about mobile networks / 6G?

3. Quantum Internet

- New network architectures to fully exploit the quantum advantages
- New control / management plane protocols

4. Quantum computing for classical networks

Quantum Machine Learning for better resource optimization / management

5. Realistic use case and applications

Societal, technological, and economic interest in the medium-/long-term

Why a Quantum Internet? (1)

Why a Quantum Internet? (2) **Applications**: Distributed quantum computing Blind computation delegation Clock synchronisation Sensing and metrology Quantum chemistry Quantum repeaters Quantum computers

The current international landscape

Standardisation bodies

ETSI → Industry Study Group on QKD

ITU-T → Focus Group on Quantum Information Technology for Networks

IRTF → Quantum Internet Research Group

Industry alliances

GSMA → Released in March 2021 a white paper on "Quantum Computing, Networking and Security"

EU initiatives

Quantum Flagship
QuantERA (ERA-NET programme)
EuroQCI

Contacts

Email:

c.cicconetti@iit.cnr.it

Personal web page:

https://ccicconetti.github.io/

Research group web page:

https://ui.iit.cnr.it/en/

Some relevant papers:

- L. Hanzo et al. "Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless." Proc. of the IEEE 100, 2012.
- J. L. Hevia et al. "Quantum Computing." IEEE Software 38, no. 5 (September 2021): 7–15.
- S. Wehner et al. "Quantum Internet: A Vision for the Road Ahead." Science 362, no. 6412, 2018.
- F. Bova et al. "Commercial Applications of Quantum Computing." EPJ Quantum Tech. 8, 2021.
- A. Bhasin and T. Manas. "Quantum Computing at an Inflection Point: Are We Ready for a New Paradigm." IEEE Trans. on Eng. Manag., 2021.

Control and Monitoring of Open Disaggregated Transport Networks

Ramon Casellas, Raul Muñoz, Ricardo Martínez, Ricard Vilalta

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

Visions of Future Communication Summit, Lisbon, 24-25 Nov 2021

What to research? Starting point

- Optical (Transport) Networks no longer (just a) point-to-point technology
 - Towards Meshed networks with high dynamicity, increased device programmability
 - Optical Networks no longer "quasi-statically managed"

• Address the effect of physical layer impairments (incl

Technical evolutions:

- From "an optical channel" (fixed grid, fixed client rates) to "management of spectrum services"
- Increasing data rates 100G, 200G, 400G, 800G coherent transmission
- Multiple "circuit switching" technologies: wavelength, waveband, frequency slot, SDM core/mode, fibers..

Challenges

• Dynamic provisioning and Efficient path computation with dynamic (heterogeneous)

resource allocation

Why is It Important? Optical Disaggregation (cf. TIP, ONF)

B100G implications: Open Terminal Support of OTSiA

SDN Control Multiband and SDM sys.: Drivers and motivation

Multi-band systems and band division multiplexing (BDM):

• SDM switching for providing spatial paths beyond point-to-

- Extend optical spectrum used by wavelength division multiplexing (WDM) to the entire set of available low-loss bands (U, L, C, S and O) in standard single-mode fibers (SSMFs)
- Potentially needs upgrades on the transceivers, optical amplifiers and ROADMs. Worth it?

- Space division multiplexing (SDM) transmission to exploit the spectral and the spatial dimension of the fiber (i.e., frequencies, cores and modes):
 - SDM super-channels, by exploiting multicore fibers (MCF), multimode fibers (MMF), combining cores and modes in few-mode multicore fibers (FM-MCFs), or by deploying bundle of SSMFs

What to research? Physical Impairments & QoT Validation

- At high rates 400G with Wide Band systems and MCF, accounting for PLI is critical
- Threats: Lack of common, standard and open data models
 - Complex problems & Limited innovation in terms of physical impairment modeling.
 - Current systems need to interop with heterogeneous monitoring info sources.
 - Proprietary and costly simulation tools difficult to interop or integrate.
- Opportunities: Combine system modeling and real-time monitoring
 - Open-Source planning and computation tools are becoming available: Net2plan, GNPy,...
 - Currently, active development in IETF CCAMP/TEAS working group, ONF T-API,...
- Challenges: Modeling in terms of
 - Open Terminals *operational modes*
 - Attributes of network elements and fibers (SSMF) etc.

Optical Monitoring and Telemetry: Crucial for network health

- Issues: Heterogeneity in terms of data sources, protocols and data models
 - Huge integration effort, Optical Monitoring in disaggregated networks is challenging
- Evolutions towards applications related to data-science, machine-learning, autonomous operation...
 - From "monitoring" to "monitoring + streaming telemetry" → Pull (Polling) vs Push
- What is needed?
 - Adopt "model-driven telemetry". Develop telemetry architectures, Data models, Efficient Protocols, and Applications

second; Full or partial

too many clients; Robustnes

What to Research? Transport Network Slicing

AENOF Gestión 1+D+i

Why is it important? Spectrum Services

Thank you! Any questions?

Work partially funded by the Spanish AURORAS (RTI2018-099178-B-I00) project and the EC H2020 B5G-OPEN (101016663)

