

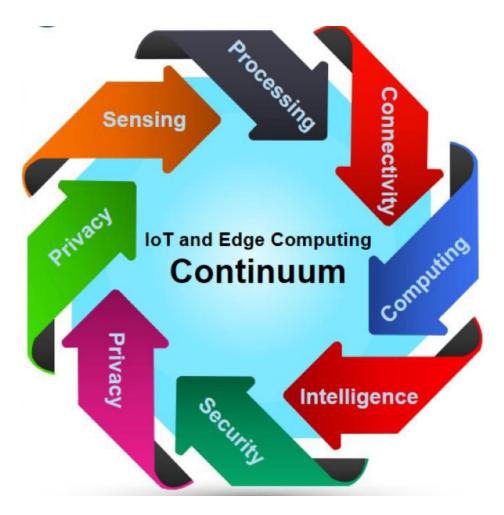
IoT and Edge Computing Research and Innovation: Priorities and Synergies with SNS Partnership

Juergen Sturm - AIOTI Management Board Chair

AIOTI and 6GIA: Common research topics

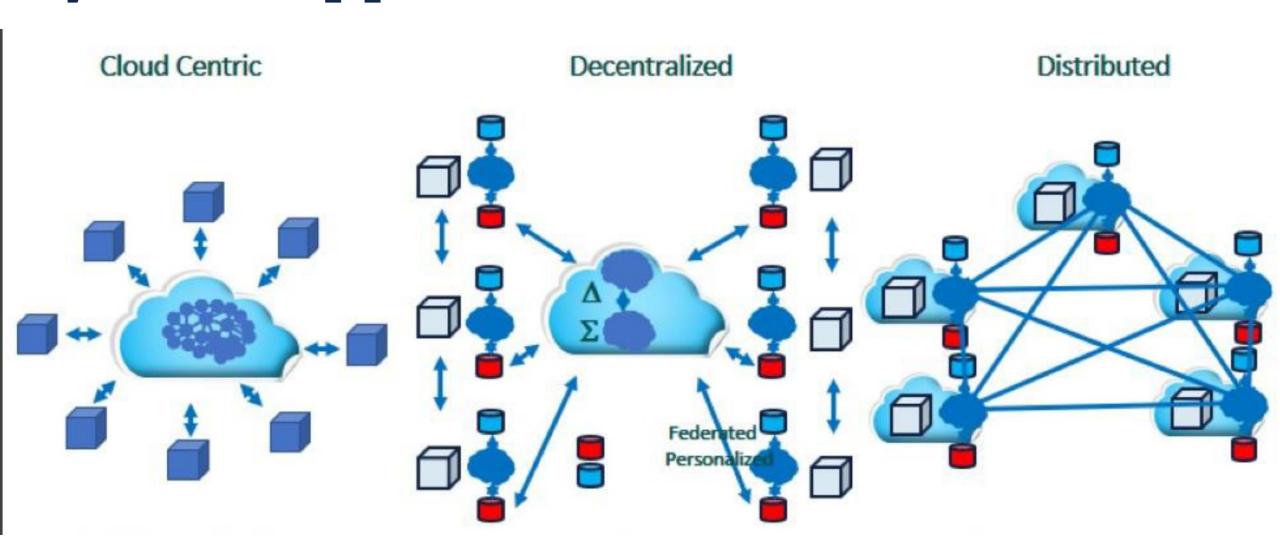
- IoT related topics proposed and contributed to NetWorld Europe SRIA 2020 via joint document developed by 6G IA and AIOTI in 2019:
 - ✓ <u>Smart Networks and IoT: Common topics for research and innovation in Horizon Europe</u>
- Additional relevant topics (from draft AIOTI SRIA):
 - ✓ loT and X-Continuum Paradigm, applied in 6G
 - ✓ Decentralized Distributed loT Edge Systems applied in 6G infrastructures
 - √ Federated Learning and Al for loT Edge, applied in 6G infrastructures
 - ALOTI Digital Twin applied in 6G

Intelligent Connectivity


- loT connectivity continuum
- Combination of wireless/cellular, Al and loT technologies
- Context-awareness capability
- Intelligent device management
- Optimised low and ultra-low latency and faster response
- Optimised bandwidth for real-time data collection and exchange.
- New odge processing approaches for scaling, lower response time and extended coverage.

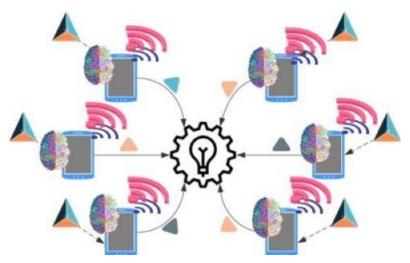
loT and X-Continuum Paradigm applied in 6G

- Research on addressing the end-toend capabilities of loT technologies across the edge granularity and beyond connectivity, gateways, edge processing, robotics, platforms, applications, Al and analytics
- Continuum of intelligence and loT edge capabilities
- Continuum of IoT and edge applications across vertical sectors and seamless integration



Decentralized Distributed loT Edge Systems, applied in 6G infrastructures

- loT architectures applied in 6G, considering the requirements of distributed intelligence at the edge, cognition, artificial intelligence, context awareness, tactile applications, heterogeneous devices, end-to-end capabilities
- Research on distributed intelligence at the edge, cognition, context awareness, tactile applications and integration of heterogeneous.
- Autonomies and distributed intelligence in loT towards the Internet of Autonomous Things


Decentralized Distributed loT Edge Systems, applied in 6G infrastructures

Federated Learning and Al for loT Edge, applied in 6G infrastructures

- Federated Learning and Artificial Intelligence for IoT Edge Systems applied in 6G
- Federated Learning brings Al models close to the edge to enhance data protection, improve inference reliability, and increase autonomy of end clusters (e.g., end loT/lloT devices, on-premises servers, etc.)
- The cloud plays a federation role for aggregating insights from different loT edge dîstributed clusters to generate a federated model shared with each individual cluster
- Collaborative work for loT devices and services discovery, applied in 6G
- Challenges-workflow standardization, interfaces edge/cloud, orchestration, model contamination, and pipes for handling distributed traffic
- Distributed loT model at horizon, applied in 6G, with embedded Al enabling the shift

Digital Twin applied in 6G

- Virtual representation of loT devices mirroring the relevant dynamics, characteristics, critical components and important properties of an original physical abject throughout its life cycle. Real-time update based on reliable multi-sense wireless sensing, cyber-physical interaction and reliable wireless control over interaction points where wireless devices are embedded
- Technique for mesh and multi point over the air (OTA) updates/upgrades
- Simulation and modelling tools for large scale of realtime, robust and seamless interactions among, loT digital-twins, humans, machines and environments

Thank you for your attention

@aioti_eu www.aioti.eu

Jordi Serra PhD, Researcher CTTC/CERCA

Visions for Future Communications Summit, Lisbon, November 24,25 2021.

- Al for 6G networks: motivation and pitfalls.
- Sustainable AI for 6G networks

Robust Al for 6G networks

Conclusions

Al for 6G networks: motivation and pitfalls.

- Al a key ingredient of the future 6G networks. WHY?
- Stringent KPIs of multiple vertical services increase network complexity

	4G	5 G	6G
Peak data rate	1 Gb/s	20 Gb/s	≥1Tb/s
User-experienced data rate	10 Mb/s	100 Mbit/s	1 Gb/s
Spectrum efficiency	1×	3×	15 – 30×
Mobility	350 km/h	500 km/h	\geq 1,000 km/h
Latency	10 ms	1 ms	\leq 100 μ s
Connection density (devices/km²)	10 ⁵	10 ⁶	10 ⁷
Network energy efficiency	1×	100×	100–10,000×
Area traffic capacity	0.1 Mb/s/m²	10 Mbit/s/m ²	≥1 Gb/s/m²

Al for 6G networks: motivation and CTTC pitfalls (contd.)

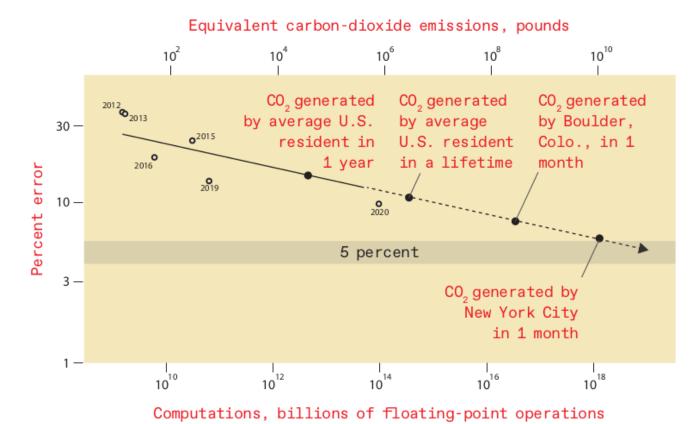
- Model-based approach in 6G too complex.
- Need for self-x networks to reduce CAPEX, OPEX.
- That is the motivation for Al.

Advantages:

- Alleviate model complexity
- Compared to conventional model-based approach:
 - Improved Performance, increase computational efficiency

Drawbacks:

- Data-inefficient, NEED FOR SUSTAINABLE AL
- Unstable Performance. **NEED FOR ROBUST AI**
- Generalization. NEED FOR SUSTAINABLE, ROBUST AI



Sustainable AI for 6G networks

- Motivation: SoTA AI require huge amount of data for model training.
- Cost of improving SoTA ML is becoming unsustainable:

Sustainable AI for 6G networks: Research directions for sustainable AI

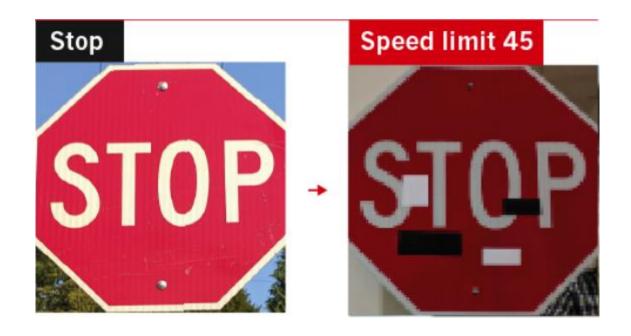
- Federated learning:
 - Training leverages distributed set of nodes.
 - Each node only uses local samples.
 - [Qiu_2021] FL can be greener than centralized learning (CL):

Country/CO2(g)	V100 <i>PUE</i>	K80 = 1.67	V100 <i>PUE</i>	K80 = 1.11	FL IID	FL non-IID
USA	1.6	5.2	1.1	3.5	0.5	1.0
China	2.9	5.2 9.2	1.9	3.5 6.2	0.9	1.7
France	0.2	0.8	0.2	0.5	0.1	0.1

CL vs FL for ResNet-18 on FashionMNIST [Qiu_2021].

Meta-learning:

- Learn to generalize with less training samples.
- Flexible to learn new tasks with few samples.



Robust AI for 6G networks

Adversarial attacks have shown to degrade SoTA deep learning methods [Heaven_2019].

Robust Al for 6G networks

- In 6G may compromise network security / reliability.
- E.g. Adversarial attack on Massive-MIMO CSI feedback [Liu_2020].
- Robustness to adversarial attacks hot topic: e.g. Non-Convex min-max optimization [Hong_2020].

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \max_{\boldsymbol{\delta}: \|\boldsymbol{\delta}_i\| \leq \varepsilon} \ell(p(\mathbf{u}_i + \boldsymbol{\delta}_i; \mathbf{w}), t_i).$$

- Al a key ingredient in 6G
- Challenges: Sustainability, robustness
- Seminal research in AI, hot topic for 6G

Thanks for your kind attention!

Questions?

Jordi Serra

PhD, Researcher

CTTC/CERCA

Email: jserra@cttc.es

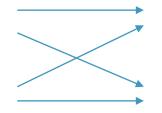
- [Debbah_2020]. J. Du, C. Jiang, J. Wang, Y. Ren and M. Debbah, "Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service," in IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 122-134, Dec. 2020
- **[Thompson_2021]** N.C. Thompson et al., "Deep Learning's diminishing returns", IEEE Spectrum, pp. 51-55, October 2021.
- [Qiu_2021]. X. Qiu et al. "Can Federated Learning Save The Planet?", https://arxiv.org/pdf/2010.06537.pdf, April 2021.
- **[Heaven_2019],** D. Heaven, "Why deep-learning Als are so easy to fool", Nature news feature, October 2019.
- [Liu_2020] Q. Liu, J. Guo, C. -K. Wen and S. Jin, "Adversarial attack on DL-based massive MIMO CSI feedback," in Journal of Communications and Networks, vol. 22, no. 3, pp. 230-235, June 2020, doi: 10.1109/JCN.2020.000016.
- [Hong_2020] M. Razaviyayn, T. Huang, S. Lu, M. Nouiehed, M. Sanjabi and M. Hong, "Nonconvex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances," in IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 55-66, Sept. 2020, doi: 10.1109/MSP.2020.3003851.

mec

The enablers towards 6G and B6G (Joint Communications & Sensing): materials, electronics and circuits

André Bourdoux

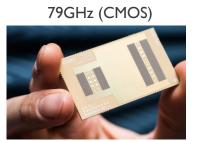
3rd Visions for Future Communications Summit 24-25 November 2021, Lisbon

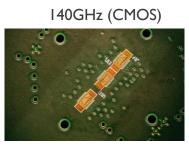


Key Radio Technologies for wireless communications and active sensing

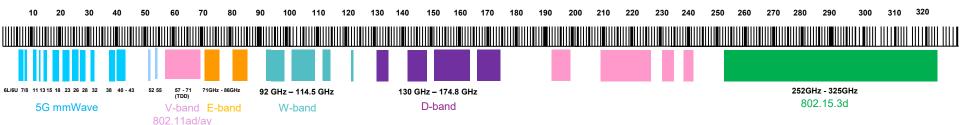
sub-THz

Cell-free massive MIMO

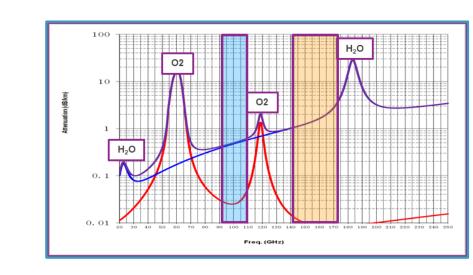



Wireless communications

Active sensing (= radar)



sub-THz


New radio spectrum to meet the 6G capacity Demand

Towards THz frequencies for Tbps wireless connectivity and high-resolution sensing/radar

- Wide bandwidths available at higher frequencies
 - W-band: > 17GHz
 - D-band: > 30GHz
 - 802.15.3d: > 50GHz

$$C = B \cdot log_2 \left(1 + \frac{S}{N} \right) \qquad R_{res} = \frac{c}{2B}$$

'unec

6G/B6G high capacity applications

Towards wide bandwidth wireless connectivity and high-resolution sensing/radar

Kiosk, automotive data, D2D

vital sign sensing, user tracking

Multi-user AR/VR, holographic display

proximity sensing, people counting and tracking

Fixed wireless access

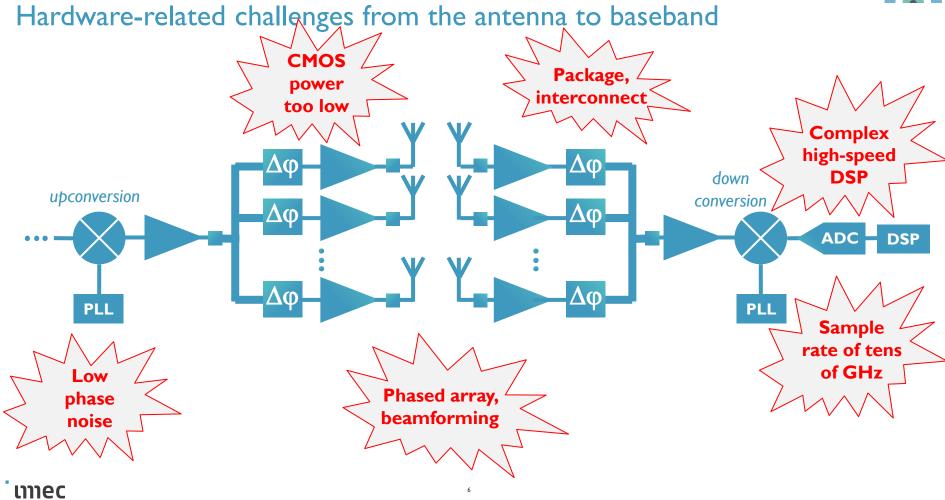
radar detection, terrain mapping

Wireless Backhaul/Fronthaul

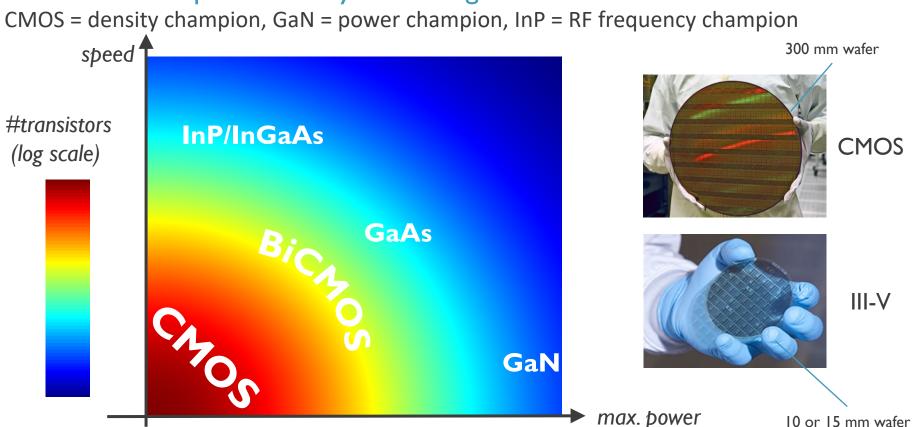
Fixed point-to-point links for cellular networks

Im

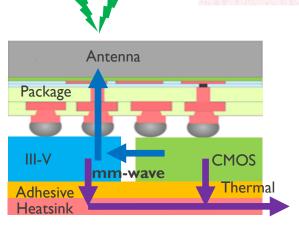
10_m


100m

>100m

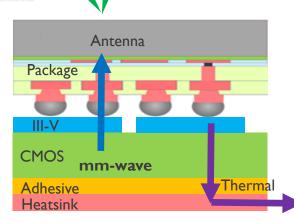

5

Current landscape in foundry technologies


III-V technologies use very few metals (gold)

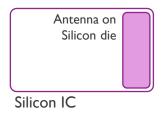
unec

CMOS & InP Integration challenges

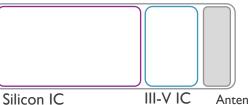

- Three dedicated paths needed:
 - Radiation from top
 - Heat removal from bottom
 - Signal routing in between
- Common Challenges > 100 GHz
 - Dimensions below 50-100 μm (bumps, vias, interconnect traces/spacing, ...)
 - Routing of large number of connections (RF/DC/IF/Digital)

- ID Beam-steering
- Thermal solution using bottom contact

- 3D chip integration
 - 2D Beam-steering
 - Complex packaging
 - Thermal design more challenging



8


Chip-antenna co-design above 100GHz

EM and thermal challenges

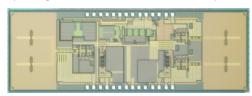
(PA/LNA and antenna)

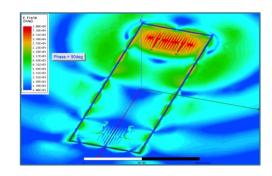
III-V IC Antenna on (PA/LNA) interposer/p

interposer/package or separate die

Challenge:

On-chip antenna design in CMOS


Challenge:


On-chip antenna design & low-parasitics IC/IC interconnect

Challenge:

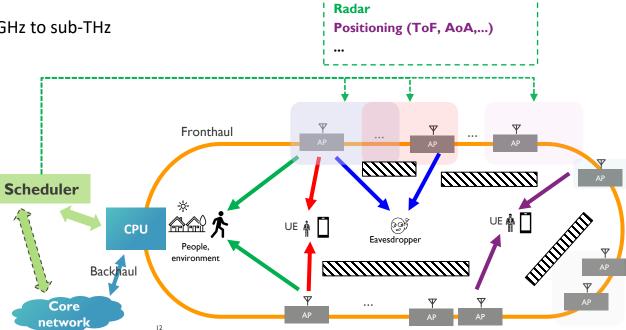
On-interposer antenna design & low-parasitics IC/IC interconnect

140 GHz FMCW radar, 10GHz BW, with antenna on chip, in standard 28 nm CMOS (3 dB gain, 11dBm EIRP, 1 mm² area)

9

ADCs

- Baseband bandwidths grow to tens of GHz
 - ADCs in the tens of Gsps range are needed
 - Initially low spectral efficiency is required
 - But eventually move to \sim 64QAM or so \rightarrow \sim 7 to 9 bits

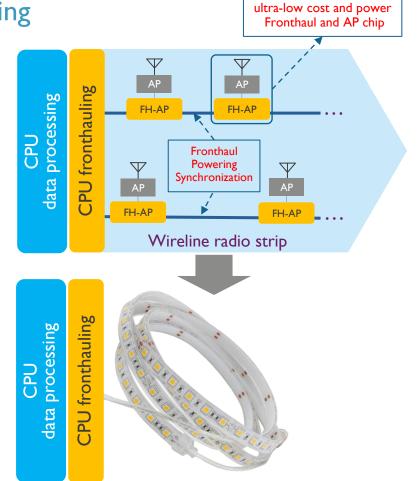

Cell-free massive MIMO

Distributed or cell free massive MIMO

From "BS-centric" to "User-centric" → Deterministic wireless!

- Large number of access points (AP) or base stations (BS) distributed in the environment
 - High reliability and availability
 - Extreme coverage, no cell edges, no inter-cell interference
 - Versatile operating modes
 - Frequency can be from sub-10GHz to sub-THz
- Challenges:
 - Carrier and clock synchronization
 - CPU complexity
 - Accurate AP/BS localization
 - Large trade-off space: slicing, scheduling, complexity
 - Power consumption and power distribution
 - Moving to mm-wave/sub-THz
 - Cost

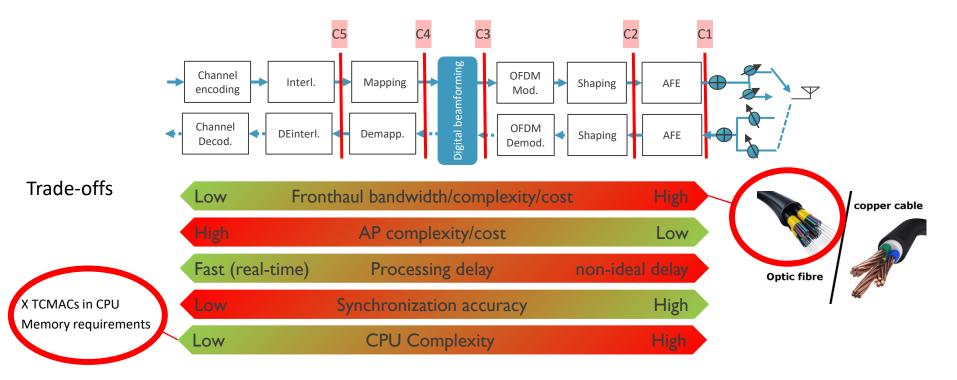
Radio access slicing determines the operating mode(s) of each AP/BS:


Connectivity

Security

Cell-free massive MIMO APs and fronthauling

- Ultra low cost, low power AP Front-end (CMOS)
- High-speed fronthauling:
 - Optical vs wireline
 - Time-sensitive fronthauling
 - Power distribution
 - Multi-AP synchronization



CF-mMIMO Functional Split

Slicing has profound impact on hardware requirements!

Complexity

Complexity: some orders of magnitude

- Cell-free massive MIMO:
 - Serial Fronthaul: multi-Terabit/s
 - CPU: multi-TeraCMAC/s
- Sub-THz connectivity:
 - DSP: several tens of TeraCMAC/s
- Radar imaging or range-Doppler-angle processing:
 - DSP: several TeraCMAC/s

We need high-performance, energy-efficient, low-cost CPUs, GPUs, TPUs, DSPs, ASICs, SoCs ... and storage (memories)

່ເກາec

Conclusions

Key research areas for sub-THz and cell-free mMIMO

Materials, electronics and circuits

- Sub-THz
 - High carrier frequency, wide bandwidth using CMOS + InP
 - Phased arrays, beamforming
 - Chip-interposer-antenna technologies
 - Tens of Gsps ADCs
- Cell-free massive MIMO:
 - AP front-end (integrating Fronthaul & Wireless functionality)
 - Serial fronthaul (high capacity, tight synchronization)
- For both
 - High-performance processing and storage

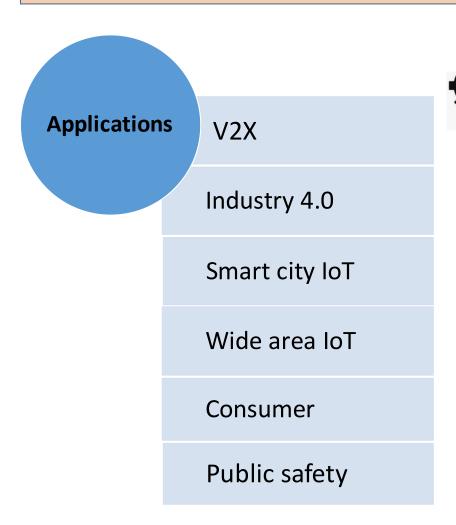
Low power Low cost Mass-producible

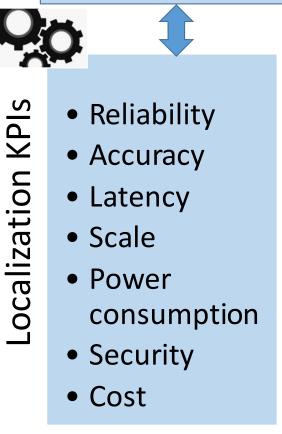
mec

embracing a better life

Multi-dimensional Optimization of Localization in 6G

Mythri Hunukumbure - SAMSUNG (LOCUS - WP3 lead)




Multi-dimensional Orchestration for Localization

Localization orchestration / management

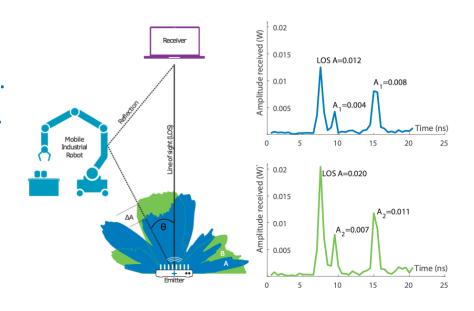
AI/ML (incl. Federated Learning Techniques)

Current Technologies

Results/Outputs

New Localization Research areas for 6G

Device Free Localization

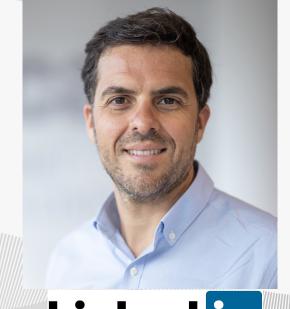

- Use of 'radar-like' sensing with mm-wave and THz bands.
- Use of wider bandwidths and pencil beams for precision.
- Imaging capabilities of THz enables accurate sensing.

Phase based localization methods

- Used traditionally in Sat Com but prone to larger delays.
- NLOS paths in Cellular and other land based comms a major obstacle.
- Use of NR-sidelink and RIS (Reconfigurable Intelligent Surfaces) potentially can overcome these.

• AI/ML techniques in multiple domains

• From improving accuracy in estimates (post-processing) to extracting more knowledge from the radio environments to aid multiple other applications and processes (eg: network management, slice configuration).

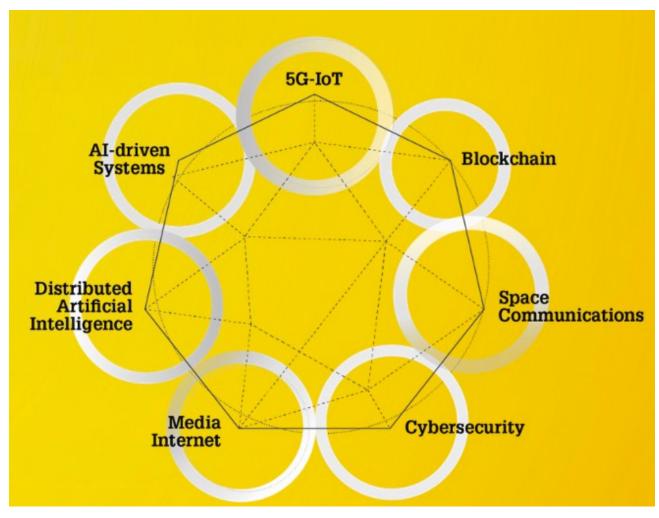


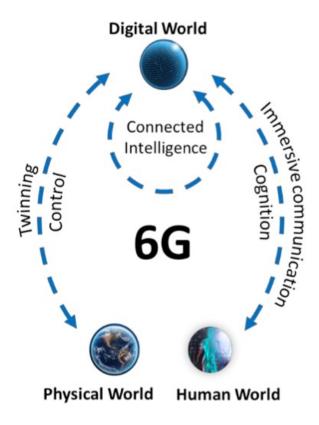
6G Enabling Technologies: An i2CAT's perspective

November 2021

Jesus Alonso-Zarate, PhD, MBA
Deputy Director

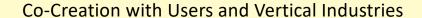
EC Research & Innovation Policy and Strategy





Convergence of 3 Worlds: Connecting Intelligence(s)

- 6G will be about bringing the physical objects to the digital world through creating **digital twins** that allow real-time control and monitoring of everything.
- 6G will be about **bringing human beings to the digital world** through truly immersive experiences that create a parallel reality for humans; the so-called **metaverse**.
- 6G will be about **connecting all intelligent objects and people**, creating a network of intelligences and allowing technology to "disappear" from our lives and become part of them.



6G: Strategic Technology Areas

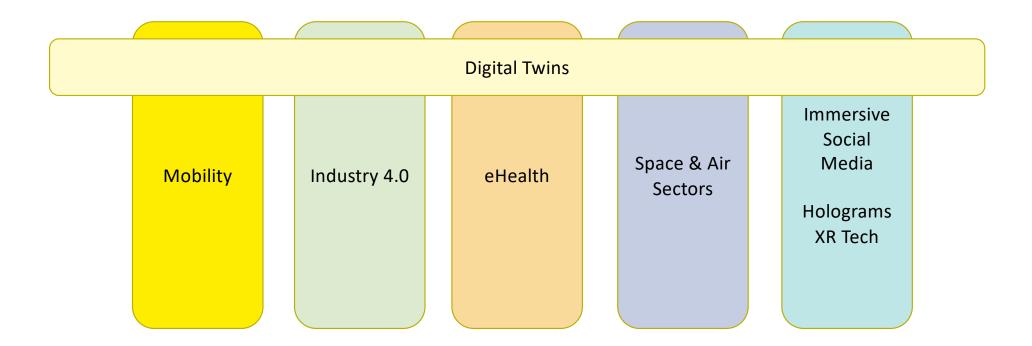
OBJECTIVE: Satisfy the needs of society by 2030

Human and Evironmental-Centric Approach: Digital Social Technology Intelligent Disruptive Non-Cloud Cyber Open Wireless Terrestrial **Networks:** Optical Security Continuum: Devices and Technologies: Networks: networks & Intelligence **Networks** Components ex: smart massive Everywhere which can Trust surfaces. coverage learn **New Use Cases**

6G: The Essential Vision

Human-Centric Technology Design

Security by Design


Artificial Intelligence by Design

Ubiquitous Coverage: everyone and everything connected

Merge of physical and digital worlds

6G: Some Key Verticals

The Players

POLICY AND REGULATION – PPP and JU

USERS – co-creation

VERTICALS – co-design

Telco Vendors

Mobile Network Operators (MNOs)

Integrators

Academia

Component / Chip
Manufacturers

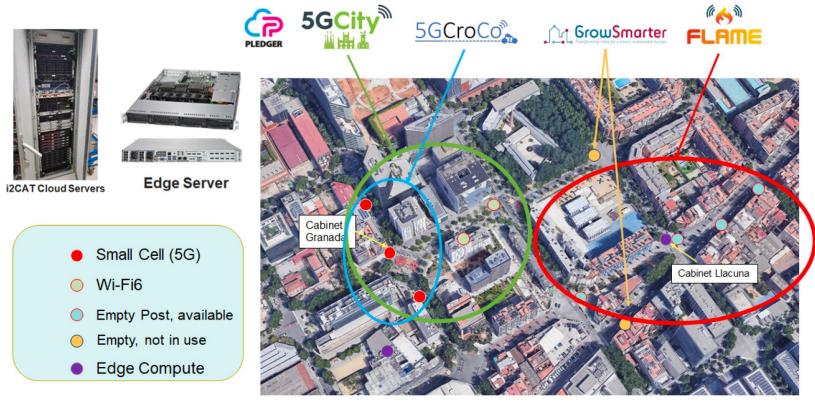
Infrastructure & Device Providers

Test and Certification

SMEs

STANDARDIZATION

OPEN INTELLIGENT NETWORKS CAN CHANGE EVERYTHING

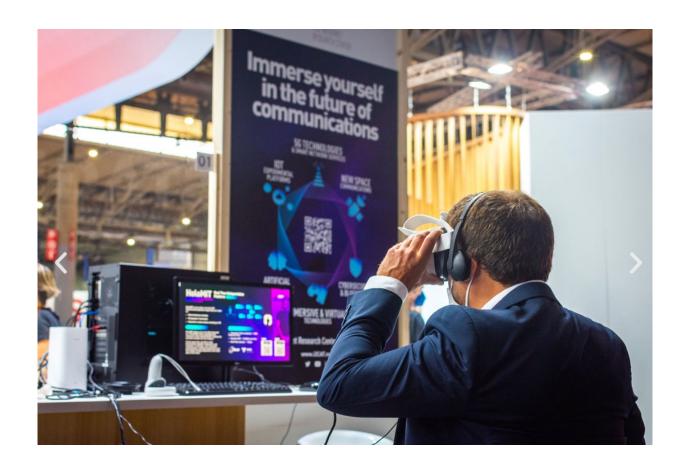


Let's build the future together.

If we don't build the future, others will do.

Test in Barcelona: CCAM Projects, edge computing, cybersecurity, orchestration, etc.

Test in rural areas: NTN networks and a free area for all kind of 6G testing


Test in the Space: access to cubesats with own infrastructure

Test in the metaverse

Jesus Alonso-Zarate, PhD, MBA

Deputy Director

EC Research & Innovation Policy and Strategy
i2CAT Foundation

http://www.jesusalonsozarate.com

@jalonsozarate

