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The Actual Revolution May Yet Come

A5G is mainly a revolution in business models

A Going beyond 5G may bring the actual revolution in mobile
networking enabled by (RAN) virtualization & Al/ML
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new role of operators and vendors & new players, new
business models & emergence of new services



Campus Networks for Industry
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ML based applications in Current Networks

Example: Factory Vertical
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New ITU standard to introduce Machine Learning into
5G networks
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Why ML for Communications (=MLC)?

AEntry points for ML-based improvements
Ahigh complexity (bad models)
Ainefficient computation (limited resources)
Aslow convergence (low latency applications)

APotential benefits
Amanageable complexity (e.g. via autoconfiguration)
Ahigher efficiency (e.g. reduce # measurements)
Afast decisions (e.g. parallelization & online learning)
Arobust predictions C anticipate rather than react



Tools for MLC

Key issues:
Large neural networks A Energy efficiency neglected
A Domain knowledge ignored
Traditional ML tools C Function properties not preserved
A Choice of performance metrics

A Amount of training data

Performance

Amount of data

Lower layers (PHY/MAC) Higher layers

Huge datasets are available but

Collection of training data is limited

A Fast time-varying channels and interference A Incomplete data (missing :
measurements for long periods)

Short stationarity interval (V2X: 10-40ms) A Erroneous data (e.g. software bugs)
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A Distributed data Misaligned data (different times)
A

Limitations on computational power/energy A Time series (i.i.d. unrealistic)



Learning in (Reproducing Kernel) Hilbert Spaces
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ML/AI for Beyond 5G RAN

A Robust online ML with good tracking capabilities
C ML with small (uncertain) data sets and fast-varying distributions

A Distributed learning under communication constraints
C New functional architectures for Big Data analytics

A Low-complexity, low-latency implementation
C New algorithms, massive parallelization

A Dependable and secure ML

A Exploit domain knowledge (e.g. models, correlations, AoA)
C Hybrid-driven ML (e.g. models, other data)
C Learn features that change slowly over frequency, time...
C Preserve important function properties
C Exploit sparsity



Sparsity in Communication Systems

Sparsity in the data (soft sparsity)

Sparsity in the channel (soft sparsity)
Sparsity in the user activity (hard sparsity)
Sparsity in the network flow (hard sparsity)
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We aren’t likely to get a 1000X improvement in compute with the
traditional, pure hardware improvements, or even better software and
communication to put more chips together. It will need co-design of
algorithms and compute e.g. can we create a model with a 1000X more
parameters, but using only 10X more compute? | believe sparse models
that address this issue and systems that can take advantage of these
constraints will make a big difference.

Rajat Monga, Google Brain, Lead Developer of TensorFlow



Sparse Recovery via a Deep Neural Network
x
:

Deep Learning model
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A Training must be short 105 |
C Designa good DNN for
sparse recovery and fast

training

empirical MSE
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